پیشبینی بافت خاک با استفاده از شبکههای عصبی مصنوعی
نویسندگان
چکیده مقاله:
بافت خاک یکی از مهمترین ویژگیهای خاک است که بر روی بسیاری از خصوصیات فیزیکی و شیمیایی مانند ظرفیت نگهداری آب، ظرفیت تبادل کاتیونی، حاصلخیزی خاک و تهویه خاک اثر میگذارد. امروزه از فناوری هوش مصنوعی مانند شبکههای عصبی و عصبی فازی برای حل مسائل مربوط به مدلسازی سیستمها و فرآیندها استفاده میشود. در این پژوهش کارآیی شبکههای عصبی مصنوعی در پیشبینی بافت خاک بررسی شد. بدینمنظور 150 نمونه خاک از عمق 15- 0 سانتیمتری از حوزه آبخیز سد گاوشان در استان کردستان جمعآوری گردید. موقعیت جغرافیایی، ارتفاع و درصد شیب در هر نقطه ثبت شد. بافت خاک در آزمایشگاه بهروش هیدرومتری اندازهگیری شد. با استفاده از شبکههای عصبی مصنوعی رابطه بین طول و عرض جغرافیایی، ارتفاع و شیب و درصد هر کدام از گروههای ذرات خاک با استفاده از نرمافزار MATLAB بهدست آمد. دقت شبکه ساخته شده با استفاده از شاخصهای آماری مانند شاخص ریشه میانگین مربعات خطا (RMSE)، شاخص نسبت خطای متوسط هندسی (GMER) و ضریب همبستگی (R) ارزیابی گردید. نتایج بهدست آمده نشان داد که کارآیی روش استفاده شده برای برآورد مقدار شن و رس خاک نسبتاً یکسان و برای برآورد مقدار سیلت کمتر بود؛ با این حال در سطح برآورد بافت خاک روش استفاده شده از کارآیی بالایی برخوردار نبود.
منابع مشابه
برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی
دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیمشناسی است که اندازهگیری و برآورد آن ضروری است. با توجه به اینکه دمای خاک فقط در ایستگاههای سینوپتیک کشور اندازهگیری میشود، کمبود آن در نقاط فاقد ایستگاه از چالشهای بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...
متن کاملتخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل ...
متن کاملپیش بینی رفتار مشتریان با استفاده از تکنیک شبکههای عصبی مصنوعی
امروزه روش های کمی، به یکی از مهم ترین ابزارهای پیش بینی برای اخذ تصمیمات و سرمایه گذاریهای کلان در بازارها تبدیل شده اند. دقت پیش بینی، یکی از مهم ترین فاکتورهای انتخاب روش پیش بینی است؛ شبکه های عصبی مصنوعی، برنامه های کامپیوتری منعطفی هستند که در سطح گسترده ای برای پیش بینی، با درجه بالایی از دقت به کار برده می شوند. امروزه میتوان با استفاده از تکنیک های داده کاوی و شبکه های عصبی به بررسی و ...
متن کاملپیشبینی آماری پهنه بندی خطر زلزله احتمالی با استفاده شبکه های عصبی مصنوعی
پیشبینی محل وقوع زلزلههای آتی همراه با تعیین درصد احتمال رخداد، میتواند در کاهش خطرات ناشی از زلزله بسیار سودمند باشد. تعیین محلهای پیشبینی شده، سبب افزایش توجه به طراحی، بهسازی لرزهای و ارزیابی قابلیت اعتمادپذیری سازههای موجود در این مکانها میشود. در پیشبینی زمان وقوع زلزله فرضیهها و نظریههای گستردهای مطرح است. هنوز شیوهای دقیق برای پیشبینی زمان رخداد زلزلههای آتی مورد تأیید ق...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 1
صفحات 1- 10
تاریخ انتشار 2018-11-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023